SYNLAB

myBIOME

Gut microbiome report

Name: Sergio Null Sample ID: DEMOZ3 Report generated on: 06-06-2022

Dr. Nicola Angel Laboratory Director

Dr. David Wood

Director of Bioinformatics

1/51 • v0.8.0-gf9ee31 • MGDB_v2 • DEMOZ3 • Sergio Null • 06 Jun 2022

Introduction to *myBIOME[™]* Report

myBIOME[™] is a comprehensive report detailing key information about your personal gut microbiome. As new information about the links between the gut microbiome and health are revealed, we will continue to update your online report to include these new findings.

Any information provided by us (including any information contained on our website or in any microbiome report) is for information purposes only. Such information is not medical advice and must not be taken to be a substitues for a consultation with your healthcare professional or doctor. It is not intended to diagnose conditions nor prescribe the use of any remedy, diet or lifestyle practice. Your health is your responsibility and if you have any concerns related to your health we recommend that you seek the advice of your healthcare professional or doctor.

2/51 • v0.8.0-gf9ee31 • MGDB_v2 • DEMOZ3 • Sergio Null • 06 Jun 2022

Areas of Action

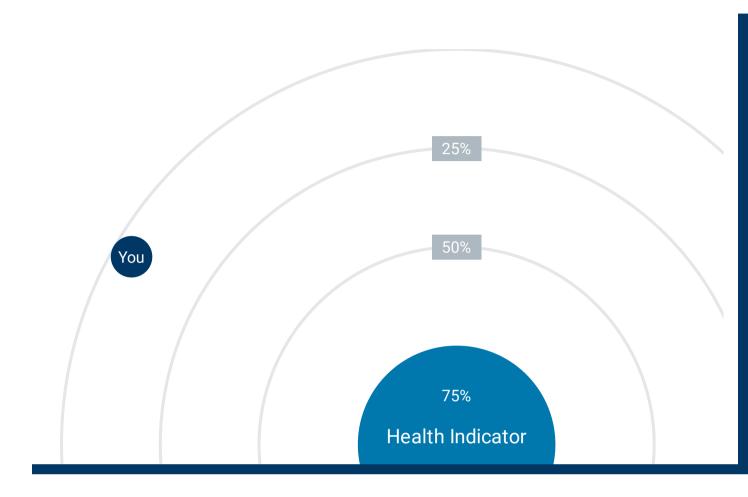
Patient Name: Sergio Null

Sample ID: DEMOZ3

Report Date: 06/06/2022

Disclaimer: The following table is intended to inform the practitioner of the analysed parameters that are outside the normal range. Your practitioner will help you in the interpretation of the myBIOME report by assessing the totality of the results included in the report together with your symptoms and medical history.

Marker	Suggestion
Pathobiont species	Further investigation recommended
	The following species have been detected in the sample, and some strains can impact health: [Bilophila wadsworthia, Clostridium_M bolteae, Eggerthella lenta]. Follow-up testing for gut pathogens is recommended, through a pathology provider.
Microbiome	More fibre and less protein
Digestive Potential - Protein (High)	Consider reducing the amount of protein in your diet to improve gut health. Although most protein is absorbed by your body, excess protein that is not absorbed will pass to your gut microbiome. The metabolites produced from the break down of protein are varied, with some being beneficial and others promoting inflammation. Diets high in animal protein and low in fibre have been observed to increase levels of pro-inflammatory gut metabolites.
Microbiome	More diverse plant foods
Digestive Potential - Mucin (High)	Mucus turnover is a normal part of our gut function, however when the abundance of bacteria that eat mucus becomes too high, this can result in a thinning of the mucus layer and activation of the immune system. Our mucus layer is important because it serves as a protective barrier between the cells lining our gut and harmful bacteria. Mucus-degrading bacteria may increase in abundance when there is not enough fibre reaching the lower large intestine, allowing gut bacteria that can use mucus as an energy source to multiply.
Diversity (Low)	More diverse plant foods
	A varied diet rich in plant-based foods such as fruits, vegetables, whole grains and nuts can help increase microbiome diversity.
Trimethylamine	Increase Broccoli & Cauliflower, reduce red meats
production (High)	The indoles diindolylmethane (DIM) and indole-3-carbinol (I3C) found in cruciferous vegetables (e.g. broccoli, cauliflower, cabbage, kale) may reduce the amount of trimethylamine that is converted to

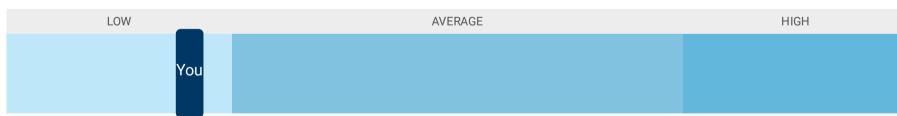

broccoli, cauliflower, cabbage, kale) may reduce the amount of trimethylamine that is converted to TMAO in the liver. In addition, excessive red meat consumption is associated with increased levels of TMAO in the blood. If your potential to produce trimethylamine is high, you may wish to increase your consumption of cruciferous vegetables and avoid eating excessive amounts of red meat. References [1] [2] [3] [4] [5] [6]

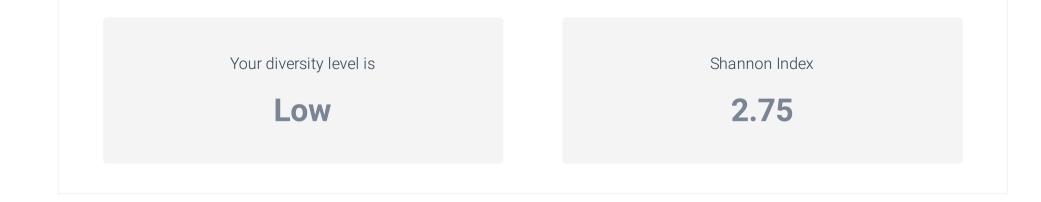
END OF AREAS OF ACTION

3/51 • v0.8.0-gf9ee31 • MGDB_v2 • DEMOZ3 • Sergio Null • 06 Jun 2022

Your report overview

Welcome to the start of your journey to understanding how your microbiome affects your health. Throughout this report, the analysed sample is compared to a healthy comparison group. This group is a collection of gut microbiome samples from everyday healthy people, who have not reported any significant health issues or symptoms. It represents a range of age groups, genders and diets.




Your gut microbiome score is less than 50%. This measurement is an indication of how well your gut microbiome might be interacting with your overall health. A higher score suggests a more positive interaction.

Microbial Diversity

MICROBIAL DIVERSITY

Microbial diversity is a measure of the number of different microorganisms and the amount of each of these microorganisms in your sample. Average to high microbial diversity is associated with good health. A varied diet rich in plant-based foods such as fruits, vegetables, whole grains and nuts can help increase microbiome diversity. The Shannon Index is a measure of diversity which is used by members of the scientific community to compare results through time.

4/51 • v0.8.0-gf9ee31 • MGDB_v2 • DEMOZ3 • Sergio Null • 06 Jun 2022

Your gut microbiome's potential to produce butyrate, a primary fuel source for gut cells

This is a good level! Your potential to produce butyrate is at a level similar to the healthy group. To benefit from this important gut microbiome function, ensure your diet is rich in dietary sources of resistant starch.

This sample reported a level similar to the healthy group

The production of butyrate is a well-studied function of the gut microbiome. This 'metabolite' is named as one of the primary fuel sources for gut cells and has been shown to reduce inflammation throughout the body and help regulate appetite. A similar or high level to produce butyrate is beneficial for your gut microbiome and helps to maintain a healthy environment in the gut. Foods rich in resistant starch (e.g. lentils, peas, beans, and rolled oats) will encourage microbes in your gut to produce butyrate.

EVIDENCE RATING

Your microbiome's potential to negatively impact your gut through inflammation

This is a typical level. You have a similar potential to produce hexa-lipopolysaccharides (hexa-LPS) as the healthy group, which means this substance is unlikely to be a major contributor to inflammation in your body. Having diverse sources of fibre can help reduce the levels of microbes that produce hexa-LPS.

This sample reported a level similar to the healthy group

Hexa-lipopolysaccharide (hexa-LPS) is a pro-inflammatory molecule and a component of the cell wall in some bacteria. When these bacteria die, hexa-LPS is released into the gut. Diets high in fat, especially saturated fat, allow hexa-LPS to cross the intestinal barrier and eventually enter the bloodstream. High levels of hexa-LPS in the blood have been observed in individuals with heart disease, type 2 diabetes, obesity, and non-alcoholic fatty liver disease. If you have a high potential to produce hexa-LPS, you may wish to avoid excessive consumption of saturated fat. Dietary sources of saturated fat include butter, coconut oil, cheese, processed meats, chocolate, icecream, cakes and biscuits.

EVIDENCE RATING

5/51 • v0.8.0-gf9ee31 • MGDB_v2 • DEMOZ3 • Sergio Null • 06 Jun 2022

Your gut microbiome's ability to break down fibre

This is a good level! Your potential to break down fibre is similar to the healthy group in this sample. This is an important gut microbiome function to maintain because it results in the production of beneficial substances that promote good gut health. To ensure the production of these beneficial compounds ensure your diet contains plenty of fibre.

This sample reported a level higher than the healthy group

Fibre-degrading bacteria are responsible for producing important by-products such as short chain fatty acids which play a critical role in keeping your gut healthy. Specific prebiotic fibres—detailed in your food suggestions—will promote the growth of your beneficial, fibre-degrading bacteria. A similar or high proportion of species that can break down fibre compared to the healthy group is considered beneficial.

EVIDENCE RATING

Your gut microbiome's ability to break down protein

This is not a good level. The proportion of bacteria present in your sample that can break down protein is at a high level, which is not ideal. When protein is broken down by bacteria in the gut microbiome it can lead to the production of substances that promote inflammation. To balance this function, try increasing your consumption of complex fibres such as resistant starch.

This sample reported a level higher than the healthy group

Everyone's microbiome contains species that can break down protein into a variety of compounds, including some compounds that promote inflammation. Having a high proportion of these species may reflect an insufficient amount of fibre in the diet or an excessive intake of protein. A high proportion of protein-degrading bacteria suggests that not enough fibre is reaching the lower colon to feed the bacteria that specialise in eating fibre.

6/51 • v0.8.0-gf9ee31 • MGDB_v2 • DEMOZ3 • Sergio Null • 06 Jun 2022

Your microbiome's potential to produce branched chain amino acids

This is a good level! Your potential to produce branched chain amino acids is at a level similar to the healthy group. This is good, as bacterially produced BCAAs are observed to be associated with obesity and insulin resistance.

This sample reported a level similar to the healthy group

BCAAs play an important role in building muscles and in helping regulate fat and sugar metabolism. However, a high potential to produce BCAAs by your gut microbiome may not be a good thing as high levels of bacterially produced BCAAs have been observed in individuals with obesity and insulin resistance. Having a low or similar potential to produce branched chain amino acids (BCAAs) compared to the healthy group is generally considered beneficial. Maintaining muscle mass through regular resistant exercise could help regulate BCAA blood levels.

EVIDENCE RATING

Your microbiome's potential to contribute to cardiovascular disease

This is not a good level. Your potential to produce trimethylamine (TMA) is at a high level in this sample. Trimethylamine is converted by the human liver into trimethylamine oxide (TMAO) which has been linked to cardiometabolic conditions. Plant chemicals known as indoles have been shown to reduce the production on TMAO. You may wish to consider increasing your consumption of dietary sources of indoles such as broccoli, kale, cabbage and cauliflower.

This sample reported a level higher than the healthy group

A similar or low potential to produce trimethylamine compared to the healthy group is generally considered beneficial. Trimethylamine is converted by the human liver into trimethylamine oxide (TMAO) which has been linked to cardiovascular and chronic kidney disease. Diets high in animal

protein and low in fibre have been associated with increased trimethylamine production by gut microbes while plant chemicals known as indoles have been shown to reduce the production of TMAO.

EVIDENCE RATING 🚖 🚖 🚖 🏠

7/51 • v0.8.0-gf9ee31 • MGDB_v2 • DEMOZ3 • Sergio Null • 06 Jun 2022

Your microbiome's potential to protect your nervous system

This is a good level! Your potential to produce indolepropionic acid (known as IPA) is similar to the healthy group. This is good, because IPA is a strong antioxidant that can protect nerve cells from damage and may help protect against insulin resistance.

This sample reported a level similar to the healthy group

IPA is a strong antioxidant produced by our gut bacteria that performs many important functions in our gut. It can protect nerve cells from damage, suppress inflammation and may protect against insulin resistance and type 2 diabetes. Consuming foods high in fibre and in particular rye, has been correlated to increased IPA production in the gut. A similar or high potential to produce indolepropionic acid (IPA) compared to the healthy group is considered beneficial.

EVIDENCE RATING ★★☆☆

Your microbiome's potential to prevent kidney stones

This is a good level! Your potential to degrade oxalates is high. This may reduce your risk of developing calcium oxalate kidney stones.

This sample reported a level higher than the healthy group

The gut microbiome of individuals who suffer from frequent kidney stones often have a low potential to degrade oxalate. Oxalate is one of the main components of calcium oxalate kidney stones. If you are prone to kidney stones, you may need wish to discuss trialling a low oxalate diet with a health care professional. However, if you do not suffer from kidney stones then your potential to degrade oxalate is not of concern. A similar or high potential to break down oxalate compared to the healthy group is generally considered beneficial.

EVIDENCE RATING ★★☆☆☆

8/51 • v0.8.0-gf9ee31 • MGDB_v2 • DEMOZ3 • Sergio Null • 06 Jun 2022

Your gut microbiome's potential to produce strong-smelling flatulence

This is a good level! Your potential to produce hydrogen sulphide is at a level similar to the healthy group. This is good, because a high potential to produce hydrogen sulphide by gut bacteria has been associated with an impaired gut barrier function.

This sample reported a level similar to the healthy group

As the microbes in your gut digest different fuel sources, such as fibre, protein, mucus and even bile acids, they produce different types of gases as a by-product. Flatulence is primarily made up of odourless gases such as nitrogen, hydrogen, carbon dioxide, and methane. However, a small percent of flatulence can be made up of the gas hydrogen sulphide, which gives flatulence the characteristic rotten eggs smell. A small amount of hydrogen sulphide gas has been found to be protective of the gut, however a high potential to produce hydrogen sulphide has been associated with mitochondrial dysfunction and impaired gut barrier function. Research has found that the production of hydrogen sulphide by gut bacteria can be inhibited by consuming foods high in the prebiotic fibres resistant starch (RS) and fructooligosaccharides (FOS).

EVIDENCE RATING ★★★☆☆

Your microbiome's potential to contribute to cell replication and repair

This is a good level! Your gut microbiome's potential to produce folate is at a higher level than the healthy group. Folate is important for cell replication and repair. Your gut microbiome has the potential to contribute up to 37% of your daily folate requirement.

This sample reported a level higher than the healthy group

Folate plays an important role in cell replication and repair. Deficiencies can result in an increased risk of heart disease, anaemia, and stroke in adults. We cannot produce folate on our own and it is primarily obtained from plants in our diet (e.g. dark green leafy vegetables, fruits and legumes) and bacteria living in our gut. This bacterial production can supplement your body's folate requirements. A

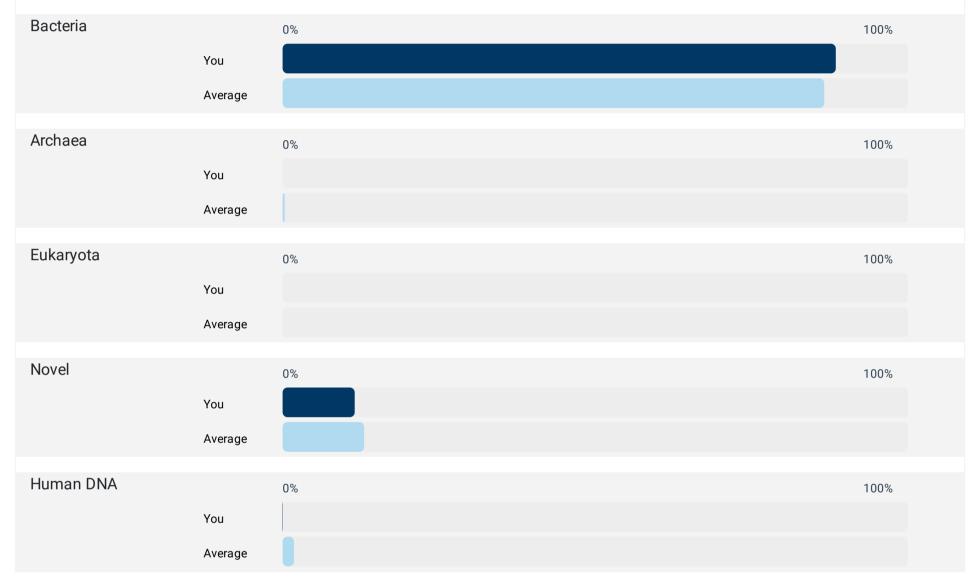
similar or high potential to produce folate compared to the healthy group is generally considered beneficial.

EVIDENCE RATING ★★☆☆☆

9/51 • v0.8.0-gf9ee31 • MGDB_v2 • DEMOZ3 • Sergio Null • 06 Jun 2022

Digging deeper into the detail

Gut microbiome report

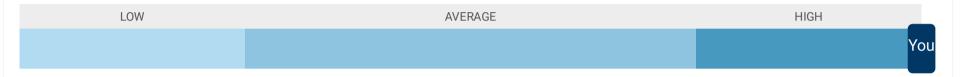


10/51 • v0.8.0-gf9ee31 • MGDB_v2 • DEMOZ3 • Sergio Null • 06 Jun 2022

Sample Composition

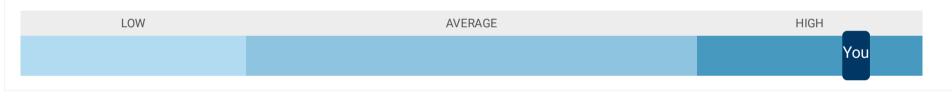
SAMPLE COMPOSITION

Most of the DNA in your stool (~99%) is from microorganisms and only a small amount (~1%) is from you. The microorgansims in your gut fall into four main groups: bacteria, archaea (another form of microscopic life), eukaryotes (this includes fungi and parasites) and viruses. Below we show the levels of bacteria, archaea, eukaryotes, and novel (unidentifiable) DNA in your sample. The amount of human DNA in your sample is also shown. A high amount (greater than 4%) of human DNA may indicate gut inflammation. If you have greater than 4% human DNA, and you did not accidentally touch your swab during sampling, you should consult with a health care practitioner.


11/51 • v0.8.0-gf9ee31 • MGDB_v2 • DEMOZ3 • Sergio Null • 06 Jun 2022

Microbiome Digestion Potential

The source of food that bacteria can use varies between different species of gut bacteria. Below we show the proportion of species in your gut microbiome that can break down the fuel sources fibre, protein and mucin (mucus). After you eat a meal, food gets broken down in your stomach and travels to your small intestine, where most nutrients are absorbed. The food components that cannot be absorbed in the small intestine, such as fibre and excess protein, make their way to your large intestine where your gut microbiota transform these components into a variety of products called metabolites. These metabolites can play an important role in your health. Read more about each of the fuel sources and their links to health on each of the tabs below.


FIBRE

This scale indicates the proportion of species in your gut microbiome that can break down fibre. If you have a low proportion, consider adding more fibre to your diet to improve your gut health. Fibre is the main energy source of gut bacteria, who break it down into beneficial metabolites such as short chain fatty acids and B vitamins. Short chain fatty acids such as butyrate play an important role in keeping us healthy, and is one of the reasons fibre is an important component of a healthy diet.

MUCIN

This scale indicates the proportion of species in your gut microbiome that can break down mucin, a component of the protective mucus layer that lines our gut. Some bacteria can use mucin as a fuel source. Mucus turnover is a normal part of our gut function, however when the abundance of bacteria that eat mucus becomes too high, this can result in a thinning of the mucus layer and activation of the immune system. Our mucus layer is important because it serves as a protective barrier between the cells lining our gut and harmful bacteria. Mucus-degrading bacteria may increase in abundance when there is not enough fibre reaching the lower large intestine, allowing gut bacteria that can use mucus as an energy source to multiply.

PROTEIN

This scale indicates the proportion of species in your gut microbiome that can break down protein. If you have a high proportion, consider reducing the amount of protein in your diet to improve gut health. Although most protein is absorbed by your body, excess protein that is not absorbed will pass to your gut microbiome. The metabolites produced from the break down of protein are varied, with some being beneficial and others promoting inflammation. Diets high in animal protein and low in fibre have been observed to increase levels of pro-inflammatory gut metabolites.

LOW

AVERAGE

You

12/51 • v0.8.0-gf9ee31 • MGDB_v2 • DEMOZ3 • Sergio Null • 06 Jun 2022

Your gut bacteria can produce thousands of different substances, called metabolites, when they use different fuel sources for energy. These metabolites can interact with our immune, metabolic and nervous systems to influence our health. Some of these metabolites promote good health while others promote poor health.

13/51 • v0.8.0-gf9ee31 • MGDB_v2 • DEMOZ3 • Sergio Null • 06 Jun 2022

Below we show the potential of your gut microbiome to produce or consume different metabolites associated with health and disease. The microorganisms in your gut can transform the food components you eat into thousands of products called metabolites. Some metabolites have been associated with health benefits while others have been associated with disease. Compare your microbiome's potential to produce and consume some of these metabolites with your selected comparison group. A ' + ' sign next to the compound name indicates it is associated with health and a ' - ' sign indicates it is associated with disease.

HEALTH INDICATORS

Produced

	Hexa-acylated lipopolysaccharide		ND	LOW	AVERAGE	HIGH
•	production	0.520%			You	

The abundance of this metabolite is about the same as the comparison group.

Hexa-lipopolysaccharide (hexa-LPS) is a pro-inflammatory compound produced by some species of bacteria within the Proteobacteria phylum. High levels of hexa-LPS in the blood have been observed in individuals with metabolic and inflammatory conditions such as obesity, heart disease, type 2 diabetes and non-alcoholic fatty liver disease. Diets high in fat, especially saturated fat, allow hexa LPS to cross the intestinal barrier and enter the bloodstream. Avoiding excessive intake of saturated fat can help reduce the ability of hexa-LPS to enter the bloodstream.Common dietary sources of saturated fats include butter, coconut products, palm oil, cheese, fatty meats, biscuit, cakes, chocolate and icecream. [1] [2] [3] [4] [5] [6]

			ND	LOW	AVERAGE	HIGH
•	Methane production	0.00%	You			

This metabolite is not detected in this microbiome.

The gas methane can be produced by some species of the gut microbiome, primarily through the reduction of carbon dioxide and hydrogen. Although methane production is often detected in healthy adult populations, elevated levels of methane production has been associated with slower intestinal transit times and constipation. [1] [2] [3] [4]

		ND	LOW	AVERAGE	HIGH
D-lactic acid production	74.1%				You

The abundance of this metabolite is higher than the comparison group.

Some lactic acid bacterial species can produce a special form of lactate called D-lactate. As a form of lactate, it has the beneficial properties of being able to reduce inflammation, help maintain the gut cell barrier, and reduce colonisation by pathogens by lowering the pH in the gut. However, this form is not metabolised by our body as quickly and in rare cases in individuals with short bowel syndrome, D-lactate can build up and cause D-lactic acidosis. [1] [2] [3]

14/51 • v0.8.0-gf9ee31 • MGDB_v2 • DEMOZ3 • Sergio Null • 06 Jun 2022

Microbial Metabolites

HEALTH INDICATORS


Produced

			ND	LOW	AVERAGE	пібп	
•	Trimethylamine production	6.82%				You	

The abundance of this metabolite is higher than the comparison group.

A high potential to produce trimethylamine has been correlated to heart disease and type 2 diabetes. Once trimethylamine is produced by gut microbes, it is transported to the liver and converted to trimethylamine-n-oxide (TMAO). TMAO has been shown to be involved with blood sugar control, blood clotting and inflammation.

The indoles diindolylmethane (DIM) and indole-3-carbinol (I3C) found in cruciferous vegetables (e.g. broccoli, cauliflower, cabbage, kale) may reduce the amount of trimethylamine that is converted to TMAO in the liver. In addition, excessive red meat consumption is associated with increased levels of TMAO in the blood. If your potential to produce trimethylamine is high, you may wish to increase your consumption of cruciferous vegetables and avoid eating excessive amounts of red meat. The Heart Foundation recommends limiting red meat consumption to less than 350g per week. [1] [2] [3] [4] [5] [6] [7]

The abundance of this metabolite is lower than the comparison group.

Ammonia production is a normal way that bacteria recycle protein in the gut. However, high levels of ammonia production have been observed in individuals with impaired gut barrier function and inflammation of the gut. [1] [2]

			ND	LOW	AVERAGE	HIGH
•	B. fragilis toxin production	0.016%			You	

The abundance of this metabolite is about the same as the comparison group.

Most people's gut microbiome contain a species of bacteria called *Bacteroides fragilis*. A small proportion of *B. fragilis* strains have the ability to secrete a toxin. In some people this toxin can cause symptoms such as diarrhoea while other people can remain symptom free. There are concerns that this toxin can cause intestinal inflammation. If you are experiencing diarrhoea and have this toxin, consider seeing a healthcare practitioner.

[<u>1</u>] [<u>2</u>]

The abundance of this metabolite is about the same as the comparison group.

Beta-glucuronidase is a bacterial enzyme which can limit the excretion of compounds from the body such as medications, hormones and environmental toxins. One human study has suggested that consuming glucomannan can reduce faecal beta-glucuronidase activity. Glucomannan is a type of prebiotic fibre found in konjac root which is commonly used to make low calorie pasta and noodles.

[<u>1</u>] [<u>2</u>]

15/51 • v0.8.0-gf9ee31 • MGDB_v2 • DEMOZ3 • Sergio Null • 06 Jun 2022

HEALTH INDICATORS

Produced

			ND	LOW	AVERAGE	HIGH
•	Hydrogen sulphide production	9.85%			You	

The abundance of this metabolite is about the same as the comparison group.

The gas hydrogen sulphide is produced by bacteria when they break down sulphur-containing amino acids found in foods such as eggs, meat, and fish. This gas is responsible for the rotten egg smell of flatulence. At low to average levels, hydrogen sulphide can play a beneficial role by acting as an energy source for gut cells. However at high levels hydrogen sulphide can inhibit energy production in gut cells and disrupt the gut mucus barrier. Elevated levels of hydrogen sulphide have been associated with inflammatory bowel disease (IBD). Laboratory based studies have suggested that eating foods high in resistant starch (e.g. lentils, peas, beans, rolled oats and cooked and cooled potatoes) or fructooligosaccharides (FOS) (e.g. onions, garlic, leek, banana, peaches, wheat, barley) can reduce the production of hydrogen sulphide by the microbiome. [1] [2]

Branched chain amino acids		ND	LOW	AVERAGE	HIGH
production	69.8 %			Υοι	1

The abundance of this metabolite is about the same as the comparison group.

Branch chain amino acids (BCAAs) are involved in the regulation of glucose and fat metabolism and the immune system. High levels of BCAAs have been associated with metabolic diseases, such as obesity and type 2 diabetes. Muscle plays an important role in regulating BCAA levels. A high potential to produce BCAAs has also been associated with people who have a diet that is low in fibre. Maximising muscle mass through regular physical activity can help maintain metabolic balance. [1] [2]

16/51 • v0.8.0-gf9ee31 • MGDB_v2 • DEMOZ3 • Sergio Null • 06 Jun 2022

HEALTH INDICATORS

Consumed

		ND	LOW	AVERAGE	HIGH
Oxalate consumption	6.23%			Y	ou
The abundance of this metabolite is higher than the cor	mparison	group.			

Some bacteria can break down oxalates in the colon, thus reducing the risk of forming calcium oxalate kidney stones. People who suffer from repeated unexplained kidney stones are observed to have a low potential for oxalate degradation in their microbiome compared to non-stone formers. A similar or high level to degrade oxalate compared to the healthy group is considered optimal, however if you do not suffer from kidney stones your gut microbiome's potential to degrade oxalate is not a concern. If your microbiome has a low potential to break down oxalate and you are prone to kidney stones, you may wish to discuss trialling a low oxalate diet with a health care professional.

[<u>1</u>] [<u>2</u>]

17/51 • v0.8.0-gf9ee31 • MGDB_v2 • DEMOZ3 • Sergio Null • 06 Jun 2022

NEUROENDOCRINE

Produced

			ND	LOW	AVERAGE	HIGH
0	GABA production	44.6%				You

The abundance of this metabolite is higher than the comparison group.

GABA (gamma-aminobutyric acid) plays an important role in regulating mental state by calming the nervous system. Low levels of GABA have been associated with depression and anxiety. Most GABA is produced in the brain however your gut microbiome may contribute to your GABA levels as some bacteria can produce or consume GABA. The role of gut bacteria that produce GABA in anxiety and depression is currently not understood. If you are concerned about your mental health, it is important to seek professional help.

[1] [2] [3]

3-indolepropionic acid (IPA)	ND	LOW	AVERAGE	HIGH
production 0.3	309%		You	

The abundance of this metabolite is about the same as the comparison group.

3-indolepropionic acid (IPA) is a beneficial substance produced by some gut bacteria when they break down the amino acid tryptophan. It is a strong anti-oxidant that can help protect the nervous system from damage. Research has also shown that IPA may play a role in the prevention of type 2 diabetes and research in animal models suggests that IPA may suppress inflammation and help maintain the gut barrier. Studies have indicated that consuming foods high in dietary fibre, and in particular rye, can help increase IPA production. [1] [2] [3] [4]

		ND	LOW	AVERAGE	HIGH
Histamine production	1.15%			You	

The abundance of this metabolite is about the same as the comparison group.

Histamine is a chemical produced by the breakdown of the amino acid histidine. It is produced by human cells and also by some bacterial species in the gut. It plays an important role in immune regulation, gut function and the nervous system. Gut bacteria that can produce histamine have been observed at increased levels in patients with asthma. Additionally, people with food allergies and irritable bowel syndrome may be more sensitive to histamine in the gut. [1] [2] [3]

18/51 • v0.8.0-gf9ee31 • MGDB_v2 • DEMOZ3 • Sergio Null • 06 Jun 2022

NEUROENDOCRINE

Consumed

			ND	LOW	AVERAGE	HIGH
0	GABA consumption	12.8%			You	

The abundance of this metabolite is about the same as the comparison group.

GABA (gamma-aminobutyric acid) plays an important role in regulating mental state by calming the nervous system. Low levels of GABA have been associated with depression and anxiety. Most GABA is produced in the brain however your gut microbiome may contribute to your GABA levels as some bacteria can produce or consume GABA. The role of gut bacteria that produce GABA in anxiety and depression is currently not understood. If you are concerned about your mental health, it is important to seek professional help.

[1] [2] [3]

19/51 • v0.8.0-gf9ee31 • MGDB_v2 • DEMOZ3 • Sergio Null • 06 Jun 2022

SHORT CHAIN FATTY ACIDS

Produced

			ND	LOW	AVERAGE	HIGH
0	Butyrate production	15.8%			You	

The abundance of this metabolite is about the same as the comparison group.

Butyrate is a beneficial short chain fatty acid that is very important for gut health. It is the main fuel source for gut cells, helps keep the gut cell barrier intact, supresses inflammation, helps control appetite, and promotes the production of serotonin in the gut. Low levels of butyrate production have been observed in individuals with inflammatory bowel diseases. Consuming foods high in resistant starch (e.g. lentils, peas, beans, cooked and cooled potatoes, rolled oats) or pectin (e.g. avocado, kiwifruit, berries, citrus fruits, pumpkin, zucchini) have been shown to increase butyrate levels. [1] [2] [3] [4] [5] [6] [7] [8]

		ND	LOW	AVERAGE	HIGH
Lactate production	79.5%				You

The abundance of this metabolite is higher than the comparison group.

Lactate, or lactic acid, is a beneficial substance produced by our gut bacteria. It can reduce inflammation, help maintain the gut cell barrier, and protect from gut infections by lowering the pH in the gut. Lactate can also be converted by some bacterial species to beneficial short chain fatty acids. Lactate or lactic-acid producing bacteria have a long tradition of being used to produce fermented foods such as yoghurt, kefir, sauerkraut and kimchi.

[1] [2]

			ND	LOW	AVERAGE	HIGH
0	Propionate production	9.05%				You

The abundance of this metabolite is higher than the comparison group.

Propionate is a beneficial short chain fatty acid that is important for gut health. It helps maintain blood glucose levels, can reduce inflammation, helps control appetite and promotes the production of serotonin from the gut. The prebiotic fibre beta-glucan, found in oats and barley, has been shown to increase propionate production. [1] [2] [3] [4] [5] [6]

20/51 • v0.8.0-gf9ee31 • MGDB_v2 • DEMOZ3 • Sergio Null • 06 Jun 2022

SHORT CHAIN FATTY ACIDS

Produced

O A	Acetate production	74.9 %	ND	LOW	AVERAGE	HIGH			
The abundance of this metabolite is about the same as the comparison group.									
inflamı short c	Acetate is the most abundant short chain fatty acid produced by our gut microbiome. It plays a beneficial role by supressing inflammation, regulating appetite, and regulating fat metabolism. Several bacterial species can also convert acetate to the beneficial short chain fatty acid, butyrate. The consumption of wholegrains, fruits, vegetables, legumes, nuts and seeds are associated with increased short chain fatty acids, including acetate.								

[1] [2] [<u>3</u>]

21/51 • v0.8.0-gf9ee31 • MGDB_v2 • DEMOZ3 • Sergio Null • 06 Jun 2022

ESSENTIAL VITAMINS

Produced

			ND	LOW	AVERAGE	HIGH
0	Cobalamin (B12) production	20.4%			Υοι	

The abundance of this metabolite is about the same as the comparison group.

Vitamin B12 is important for ensuring normal functioning of the nervous system and in the development of red blood cells. Although gut bacteria can produce this vitamin, humans are only able to absorb vitamin B12 in the small intestine, thus B12 produced in the large intestine will not be used by our body. However, bacteria also need vitamin B12 to function, so although our gut bacteria are unlikely to provide us with useable vitamin B12, an average to high potential to produce B12 means your bacteria will not compete with you for available vitamin B12. Reduced vitamin B12 production is often seen in the gut microbiome of people as they age and a study in elderly individuals observed that a multistrain probiotic increased plasma B12 levels. The most important dietary sources of vitamin B12 are meat, milk and dairy products.

[1] [2] [3]

			ND	LOW	AVERAGE	HIGH
0	Folate (B9) production	69.2%				You

The abundance of this metabolite is higher than the comparison group.

Folate or folic acid plays an important role in cell replication and repair. Low folate levels can result in anaemia and have been linked to an increased risk of heart disease and stroke. Folate cannot be produced by human cells and must be obtained through diet or from the microbiome. The large intestine has the ability to absorb folate produced by the gut microbiome and it is estimated that the human gut microbiome can provide up to 37% of the daily folate requirement. All non-organic bread in Australia must be fortified with folic acid while rich dietary sources include dark green leafy vegetables, fruit, legumes, and nuts. [1] [2] [3]

The abundance of this metabolite is about the same as the comparison group.

Biotin plays a critical role in metabolism and in the regulation of the immune system. Biotin cannot be produced by human cells and must be obtained through diet or the microbiome. The large intestine has the ability to absorb biotin but it is estimated that the gut microbiome can only provide up to 4.5% of the human daily biotin requirement. Dietary sources of biotin include liver, meat, fish, eggs and nuts.

[<u>1</u>] [<u>2</u>] [<u>3</u>] [<u>4</u>]

22/51 • v0.8.0-gf9ee31 • MGDB_v2 • DEMOZ3 • Sergio Null • 06 Jun 2022

ESSENTIAL VITAMINS

Produced

			ND	LOW	AVERAGE	HIGH
0	Riboflavin (B2) production	48.2%			You	

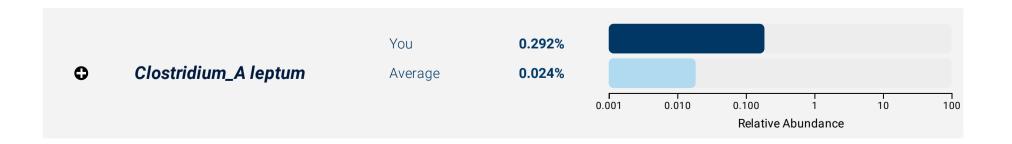
The abundance of this metabolite is about the same as the comparison group.

Riboflavin plays a crucial role in fat, vitamin B6, folate, tryptophan and homocysteine metabolism. Riboflavin cannot be produced by human cells and must be obtained through diet or the microbiome. The large intestine has the ability to absorb riboflavin but it is estimated that the gut microbiome can only provide up to 2.8% of the human daily riboflavin requirement. Dietary sources of riboflavin include milk and milk products, eggs, green vegetables, mushrooms and fortified breads and cereals. [1] [2] [3]

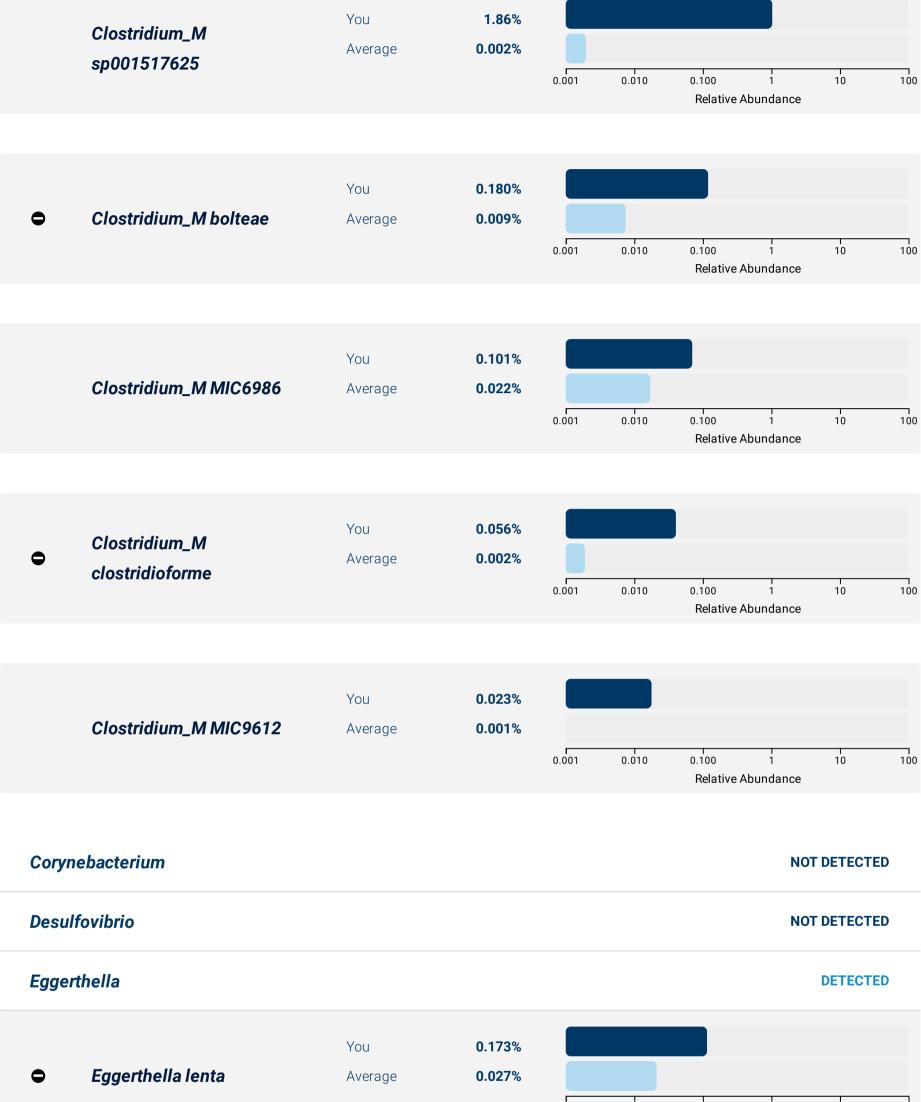
			ND	LOW	AVERAGE	HIGH
0	Vitamin K production	26.1%			You	

The abundance of this metabolite is about the same as the comparison group.

K vitamins are a family of fat soluble vitamins which play an important role in blood clotting. Vitamin K cannot be produced by human cells and must be obtained through diet or the microbiome. Vitamin K1 (phylloquinone) is found in plants such as dark green leafy vegetables and canola oil, and is the principal form of dietary vitamin K used by the body. Bacterially derived vitamin K (menaquinones) are produced by our gut bacteria and are found in fermented foods, dairy products and meat. The amount of bacterially derived vitamin K (menaquinones) that can be absorbed by the large intestine is still unknown.


23/51 • v0.8.0-gf9ee31 • MGDB_v2 • DEMOZ3 • Sergio Null • 06 Jun 2022

Species of Interest


BACTERIA (PROKARYOTES)

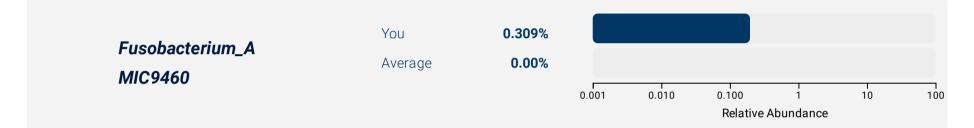
Agathobacter							NOT DETEC	TED
Akkermansia							NOT DETEC	TED
Bifidobacteriun	n						DETEC	TED
Bifidob	acterium longum	You Average	1.82% 0.499%	0.001	0.010	0.100 Relative Ab	1 1 1 10 bundance	100
Bilophila							DETEC	TED
Bilophi	la wadsworthia	You Average	0.259% 0.099%	0.001	0.010	0.100 Relative Ab	1 1 1 10 pundance	100
Campylobacter							NOT DETEC	TED
Citrobacter							NOT DETEC	TED
Clostridioides							NOT DETEC	TED
Clostridium							DETEC	TED
Clostric	lium neonatale	You Average	0.026% 0.00%	0.001	0.010	0.100	1 1 1 10	100

Relative Abundance

24/51 • v0.8.0-gf9ee31 • MGDB_v2 • DEMOZ3 • Sergio Null • 06 Jun 2022

				0.001	0.010	0.100	1	10	100
						Relative A	bundance		
Enterobacter							NC	OT DETECTI	ED
Enterococcus							NC	DT DETECTI	ED
Escherichia								DETECTI	ED
• v0.8.0-gf9ee31 •	MGDB_v2 • DEMOZ	3 • Sergio Null	• 06 Jun 2022						

Any information provided by us (including any information contained on our website or in any microbiome report) is for information purposes only. Such information is not medical advice and must not be taken to be a substitute for a consultation with your health care professional or doctor. It is not intended to diagnose conditions nor prescribe the use of any remedy, diet or lifestyle practice. Your health is your responsibility and if you have any concerns related to your health we recommend that you seek the advice of your health care professional or doctor.


Faecalibacterium

Fusobacterium

DETECTED

DETECTED

Helicobacter			NOT DETECTED
Klebsiella			NOT DETECTED
Lactobacillus			NOT DETECTED
Porphyromonas			NOT DETECTED
Prevotella			DETECTED
Prevotella bivia	You Average	0.072% 0.013%	0.001 0.010 0.100 1 10 100 Relative Abundance

Roseburia	NOT DETECTED
Ruminococcus	NOT DETECTED
Salmonella	NOT DETECTED
Streptococcus	DETECTED

26/51 • v0.8.0-gf9ee31 • MGDB_v2 • DEMOZ3 • Sergio Null • 06 Jun 2022

•	Streptococcus salivarius	You Average	0.056% 0.185%						
				0.001	0.010	0.100 Relative	1 Abundance	1 10	100

27/51 • v0.8.0-gf9ee31 • MGDB_v2 • DEMOZ3 • Sergio Null • 06 Jun 2022

Species of Interest

ARCHAEA (PROKARYOTES)

Methanogens

Other Archea

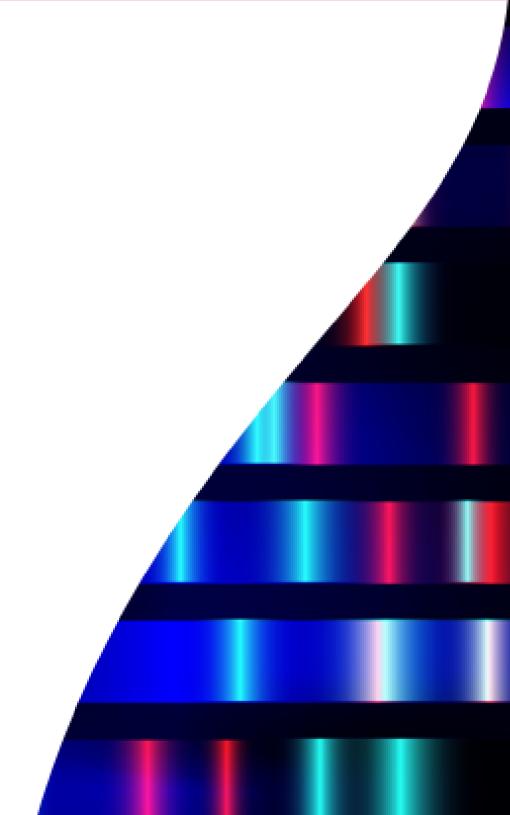
NOT DETECTED

NOT DETECTED

28/51 • v0.8.0-gf9ee31 • MGDB_v2 • DEMOZ3 • Sergio Null • 06 Jun 2022

Species of Interest

YEASTS/FUNGI & PARASITES (EUKARYOTES)


Blastocystis	NOT DETECTED
Candida	NOT DETECTED
Saccharomyces	NOT DETECTED
Other Eukaryotes	NOT DETECTED


29/51 • v0.8.0-gf9ee31 • MGDB_v2 • DEMOZ3 • Sergio Null • 06 Jun 2022

Microbial Profile

Note: Reports issued in 2022 display updated reference ranges for some species related to an improvement in laboratory processing. For more information contact mybiome@synlab.es.

This section shows the different bacteria, archaea and eukaryotes present in your gut. A phylum is the highest level of grouping (comprising hundreds to thousands of species), whereas a species is the most detailed view of your gut microbiome

30/51 • v0.8.0-gf9ee31 • MGDB_v2 • DEMOZ3 • Sergio Null • 06 Jun 2022

Your Microbiome Profile

PHYLUM

This Sample

Ph	ylum	Abundance	Range	Level
	Bacteroidota	49.6%	16.5 - 35.0%	High
	Firmicutes_A	34.0%	32.7 - 58.7%	Average
	Actinobacteriota	2.00%	1.13 - 10.3%	Average
	Proteobacteria	1.40%	0.694 - 9.09%	Average
	Firmicutes_C	0.746%	0.351 - 2.20%	Average
	Fusobacteriota	0.309%	0.00 - 0.014%	High
	Desulfobacterota_A	0.259%	0.074 - 0.501%	Average
	Firmicutes	0.152%	0.743 - 9.80%	Low

31/51 • v0.8.0-gf9ee31 • MGDB_v2 • DEMOZ3 • Sergio Null • 06 Jun 2022

SPECIES

Phylum	Species	Abundance	Range	Level
Bacteroidota	Bacteroides_B vulgatus	21.8%	0.185 - 6.74%	High
his is one of the n	nost common inhabitants of the huma	ın gut.		
uel Sources Used	:			
his species is a go	ood degrader of fibre, a good degrader	of mucin, and a moderate de	grader of protein.	
Aetabolites produc	ced:			
-	sis indicates that most members of th	is species can produce the fo	llowing metabolites: ace	tate, biotin (B7),
ranched chain am	ino acids, folate (B9), GABA, lactate, ri	boflavin (B2), vitamin K.		
letabolites consu	med:			
n addition, the gen	omic analysis shows that most memb	ers of this species can consu	me: GABA.	
merging Researc	h:			
	s bacteria have been associated with p	oolycystic ovary syndrome, ins	sulin resistance, advance	ed liver fibrosis and
he progression of	Crohn's disease. This species has beer	n associated with a diet high i	n red meat.	
Firmicutes_A	Faecalibacterium prausnitzii_G	12.7%	0.111 - 3.21%	High
Previously called F	aecalibacterium prausnitzii_B (aka stra	ain 1.2-6) this is a common qu	ut inhabitant	
Teviously called ra		an L2-0), this is a common ge		
uel Sources Used				
his species is a po	oor degrader of fibre, a poor degrader o	of mucin, and a moderate deg	rader of protein.	
Aetabolites produc	ed:			

acids, butyrate, cobalamin (B12).

Metabolites consumed:

In addition, the genomic analysis indicates that most members of this species do not consume any reported metabolites.

Emerging Research:

This species has been observed at higher levels in individuals with atopic dermatitis.

32/51 • v0.8.0-gf9ee31 • MGDB_v2 • DEMOZ3 • Sergio Null • 06 Jun 2022

SPECIES

Phylum	Species	Abundance	Range	Level
Bacteroidota	Bacteroides stercoris	12.0%	0.00 - 1.06%	High
This is a common inh	abitant of the gut that can use many d	ifferent fuel sources.		
Fuel Sources Used: This species is a mod	erate degrader of fibre, a good degrade	r of mucin, and a moderate c	degrader of protein.	
• •	l: indicates that most members of this s o acids, folate (B9), GABA, lactate, ribof		wing metabolites: aceta	ate, biotin (B7),
Metabolites consume In addition, the genom	d: nic analysis indicates that most membe	ers of this species do not cor	nsume any reported me	tabolites.
Emerging Research: One study observed th	nis species was at lower levels in indivi	duals with asthma.		
Bacteroidota	Bacteroides uniformis	5.63%	0.290 - 3.68%	High
This is one of the mos	st common inhabitants of the human g	ut.		
Fuel Sources Used: This species is a good	d degrader of fibre, a good degrader of i	mucin, and a moderate degra	ader of protein.	
•	l: indicates that most members of this s (B7), branched chain amino acids, fola [.]		•	ate, beta-
Metabolites consume In addition, the genom	d: nic analysis indicates that most membe	ers of this species do not cor	isume any reported me	tabolites.

Emerging Research:

Certain strains have been observed to promote the production of anti-inflammatory compounds, improve immune function, and provide protection against diet induced obesity in mouse models, however this has not yet been validated in humans. One study observed higher levels of this species in patients with ulcerative colitis.

33/51 • v0.8.0-gf9ee31 • MGDB_v2 • DEMOZ3 • Sergio Null • 06 Jun 2022

SPECIES

	Phylum	Species	Abundance	Range	Level
)	Firmicutes_A	Anaerostipes hadrus	5.51%	0.115 - 2.37%	High
F	ormerly known as Eub	pacterium hadrum. This is a common inha	bitant of the human gut		
	uel Sources Used: This species is a mode	rate degrader of fibre, a poor degrader of r	nucin, and a moderate d	egrader of protein.	
С	•	ndicates that most members of this speci folate (B9), hydrogen sulphide, lactate, ribo	· · · · · · · · · · · · · · · · · · ·	wing metabolites: acetate	e, branched chain
	letabolites consumed addition, the genomic	l: c analysis shows that most members of t	his species can consume	e: oxalate.	
	Bacteroidota	Bacteroides ovatus	3.78%	0.00 - 0.670%	High
F	uel Sources Used:	common inhabitants of the gut. degrader of fibre, a good degrader of muc	in, and a moderate degra	ider of protein.	
		ndicates that most members of this speci 37), branched chain amino acids, folate (B		•	
g	letabolites consumed addition, the genomic	: c analysis indicates that most members o	f this species do not con	sume any reported meta	bolites.

34/51 • v0.8.0-gf9ee31 • MGDB_v2 • DEMOZ3 • Sergio Null • 06 Jun 2022

SPECIES

Phylum	Species	Abundance	Range	Level
Firmicutes_A	Ruminococcus_B gnavus	3.10%	0.00 - 0.026%	High
This species is one	e of the earliest colonisers of the infant hur	nan gut, and it persists in th	e adult human gut.	
Fuel Sources Used This species is a m	1: noderate degrader of fibre, a poor degrader	of mucin, and a moderate d	egrader of protein.	
	ced: vsis indicates that most members of this sp lamin (B12), folate (B9), lactate, propionate		wing metabolites: acetat	e, branched chai
Metabolites consu n addition, the ger	I med: nomic analysis indicates that most membe	ers of this species do not cor	isume any reported meta	abolites.
Emerging Researc	h: s species have been observed in individua	ls with irritable bowel syndro	ome, Crohn's disease, ath	erosclerosis, anc
Emerging Researce Higher levels of thi		ls with irritable bowel syndro 2.59%	ome, Crohn's disease, ath 0.057 - 0.581%	erosclerosis, and High
Emerging Researce Higher levels of this obesity. Bacteroidota	s species have been observed in individua	2.59%	0.057 - 0.581%	
Emerging Researce Higher levels of this obesity. Bacteroidota Formerly known as Fuel Sources Usec This species is a m Metabolites produ	s species have been observed in individua Parabacteroides distasonis Bacteroides distasonis. This is a common d: noderate degrader of fibre, a good degrader ced:	2.59% n inhabitant of the human gu	0.057 - 0.581% ut. legrader of protein.	High
Emerging Researce Higher levels of this obesity. Bacteroidota Formerly known as Fuel Sources Used This species is a m Metabolites produce Dur genomic analy	s species have been observed in individua Parabacteroides distasonis s Bacteroides distasonis. This is a common d: noderate degrader of fibre, a good degrader	2.59% n inhabitant of the human gu r of mucin, and a moderate of pecies can produce the follow	0.057 - 0.581% ut. legrader of protein.	High

Emerging Research:

Higher levels of this species have been observed in individuals with colon cancer and in pregnant women with gestational diabetes.

35/51 • v0.8.0-gf9ee31 • MGDB_v2 • DEMOZ3 • Sergio Null • 06 Jun 2022

SPECIES

Phylum	Species	Abundance	Range	Level
Firmicutes_A	Clostridium_M sp001517625	1.86%	0.00 - 0.00%	High
Fuel Sources Used:				
This species is a mod	erate degrader of fibre, a poor degrader of muci	n, and a moderate degr	ader of protein.	
Metabolites produced	:			
•	indicates that most members of this species ca	•	-	beta-
giucuronidase, branch	ed chain amino acids, cobalamin (B12), folate	(B9), lactate, trimetryla	mine.	
Metabolites consume				15
n addition, the genom	ic analysis indicates that most members of this	s species do not consu	me any reported metabo	olites.
Emerging Research:				
	according to the Genome Taxonomy Database s, rather than their phenotype.	e (GTDB), a standardise	ed microbial taxonomy	based on the
Actinobacteriota	Bifidobacterium longum	1.82%	0.031 - 1.44%	High
This is a beneficial inf	abitant of the gut in adults and a popular prob	iotic		
Fuel Sources Used:	erate degrader of fibre, a poor degrader of muci	n and a moderate degr	ader of protein	
	erate degrader of fibre, a poor degrader of muci	n, and a moderate degr	ader of protein.	
This species is a mode			·	branched chain

Metabolites consumed:

In addition, the genomic analysis indicates that most members of this species do not consume any reported metabolites.

Emerging Research:

B.longum has been associated with reductions in harmful bacteria, anti-allergy effects, and anti-obesity effects in mouse models, but further research still needs to be done in humans.

36/51 • v0.8.0-gf9ee31 • MGDB_v2 • DEMOZ3 • Sergio Null • 06 Jun 2022

SPECIES

Phylum	Species	Abundance	Range	Level
Firmicutes_A	Dorea longicatena_B	1.72%	0.00 - 0.277%	High
This is a common	nhabitant of the human gut.			
Fuel Sources Used	:			
This species is a m	oderate degrader of fibre, a poor d	egrader of mucin, and a moderate	e degrader of protein.	
Metabolites produ	ced:			
	sis indicates that most members o		llowing metabolites: acet	ate, branched chain
amino acids, cobai	amin (B12), folate (B9), lactate, rib	ollavin (BZ), trimethylamine.		
Metabolites consu				
In addition, the gen	omic analysis indicates that most	members of this species do not c	consume any reported me	etabolites.
Emerging Researc				
-	ve observed this species at higher ausal women, this species was ass			
	evels in individuals with chronic fa	-		
Firmicutes_A	Fusicatenibacter sacchariv	orans 1.55%	0.418 - 4.06%	Average
This is a recently d	iscovered species and an inhabita	nt of the human gut.		
Fuel Sources Used	:			
This species is a m	oderate degrader of fibre, mucin, a	nd protein.		

Our genomic analysis indicates that most members of this species can produce the following metabolites: acetate, ammonia (urease), beta-glucuronidase, branched chain amino acids, cobalamin (B12), folate (B9), hydrogen sulphide, lactate.

Metabolites consumed:

In addition, the genomic analysis indicates that most members of this species do not consume any reported metabolites.

Emerging Research:

Lower levels of this species were observed in patients with colon cancer.

37/51 • v0.8.0-gf9ee31 • MGDB_v2 • DEMOZ3 • Sergio Null • 06 Jun 2022

SPECIES

	Phylum	Species	Abundance	Range	Level
	Firmicutes_A	Blautia sp001304935	1.31%	0.00 - 0.00%	High
•	Bacteroidota	Parabacteroides merdae	0.990%	0.00 - 0.524%	High

Formerly known as *Bacteroides merdae*. This is a common inhabitant of the human gut.

Fuel Sources Used:

This species is a moderate degrader of fibre, a good degrader of mucin, and a moderate degrader of protein.

Metabolites produced:

Our genomic analysis indicates that most members of this species can produce the following metabolites: acetate, betaglucuronidase, biotin (B7), branched chain amino acids, folate (B9), GABA, lactate, riboflavin (B2), vitamin K.

Metabolites consumed:

In addition, the genomic analysis shows that most members of this species can consume: GABA.

Emerging Research:

Higher levels of this species have been observed in individuals with hypertension and colon cancer. This species has been associated with a diet low in fruits and vegetables.

Firmicutes_A	Oscillibacter sp900066435	0.973%	0.00 - 0.136%	High
Proteobacteria	Parasutterella excrementihominis	0.881%	0.00 - 0.201%	High
Bacteroidota	Bacteroides thetaiotaomicron	0.842%	0.00 - 0.477%	High
Firmicutes_C	Phascolarctobacterium faecium	0.746%	0.00 - 0.336%	High

38/51 • v0.8.0-gf9ee31 • MGDB_v2 • DEMOZ3 • Sergio Null • 06 Jun 2022

SPECIES

	Phylum	Species	Abundance	Range	Level
•	Bacteroidota	Alistipes shahii	0.670%	0.00 - 0.497%	High
Т	his is a common inha	abitant of the human gut.			
-	uel Sources Used: This species is a mode	erate degrader of fibre, a good degrader of mu	cin, and a moderate d	egrader of protein.	
N	Netabolites produced	:			
С)ur genomic analysis	indicates that most members of this species	can produce the follow	ving metabolites: beta-	glucuronidase,
b	ranched chain amino	acids, folate (B9), GABA, lactate, riboflavin (E	2).		
N	Aetabolites consume	d:			
Ir E T tı a	merging Research: This species appears t riglycerides, high bene nd Crohn's disease. A	d: ic analysis indicates that most members of th to have mostly beneficial effects. It has been a eficial cholesterol HDL levels), and was observ additionally, a study in mice showed this speci was also observed at elevated levels in patien	associated with benefi ved as depleted in pati es may improve the e	cial markers of cardiac ents with atherosclerot fficacy of cancer immu	: health (low ic heart disease
Ir E T tı a	n addition, the genom Emerging Research: This species appears t riglycerides, high bene nd Crohn's disease. A	ic analysis indicates that most members of the total structure to have mostly beneficial effects. It has been a seficial cholesterol HDL levels), and was observed this species additionally, a study in mice showed this species.	associated with benefi ved as depleted in pati es may improve the e	cial markers of cardiac ents with atherosclerot fficacy of cancer immu	: health (low ic heart disease
Ir E T tı a	n addition, the genom Emerging Research: This species appears t riglycerides, high bene nd Crohn's disease. A lowever, this species w	ic analysis indicates that most members of the to have mostly beneficial effects. It has been a seficial cholesterol HDL levels), and was observed dditionally, a study in mice showed this speciewas also observed at elevated levels in patient	associated with benefi ved as depleted in pati es may improve the ei ts with Parkinson's Dis	cial markers of cardiac ents with atherosclerot fficacy of cancer immu sease.	: health (low ic heart disease notherapy.

39/51 • v0.8.0-gf9ee31 • MGDB_v2 • DEMOZ3 • Sergio Null • 06 Jun 2022

SPECIES

	Phylum	Species	Abundance	Range	Level
•	Proteobacteria	Escherichia coli (coli_D)	0.520%	0.00 - 0.048%	High

This species is a common inhabitant of the gut, although it is usually present at a low abundance compared to other gut microbiome species.

Fuel Sources Used:

This species is a moderate degrader of fibre, a poor degrader of mucin, and a moderate degrader of protein.

Metabolites produced:

Our genomic analysis indicates that most members of this species can produce the following metabolites: acetate, betaglucuronidase, biotin (B7), branched chain amino acids, butyrate, folate (B9), GABA, hexa-LPS, hydrogen sulphide, lactate, propionate, riboflavin (B2), trimethylamine, vitamin K.

Metabolites consumed:

In addition, the genomic analysis shows that most members of this species can consume: GABA, oxalate.

Emerging Research:

This species encompasses a large number of strains with diverse properties; a few well-known strains are a common cause of gastrointestinal disease. However, most strains will not cause gastrointestinal symptoms. Studies have observed this species at higher levels in individuals with Crohn's Disease and advanced liver fibrosis. Additionally, a recent study identified several strains from this species as being able to produce a toxin called colibactin which can damage DNA.

Ð	Firmicutes_A	Anaerostipes caccae	0.511%	0.00 - 0.00%	High
---	--------------	---------------------	--------	--------------	------

This species is an inhabitant of the human gut.

Fuel Sources Used:

This species is a moderate degrader of fibre, a poor degrader of mucin, and a moderate degrader of protein.

Metabolites produced:

Our genomic analysis indicates that most members of this species can produce the following metabolites: acetate, branched chain amino acids, butyrate, cobalamin (B12), folate (B9), lactate, riboflavin (B2).

Metabolites consumed:

In addition, the genomic analysis shows that most members of this species can consume: oxalate.

Emerging Research:

This species can also use the short chain fatty acid acetate as an energy source.

This species is primarily associated with a healthy microbiome. However some studies did observe higher levels of this species in individuals with chronic fatigue syndrome and Crohn's disease.

40/51 . v0.8.0-gf9ee31 • MGDB_v2 • DEMOZ3 • Sergio Null 🔹 06 Jun 2022

SPECIES

	Phylum	Species	Abundance	Range	Level
	Bacteroidota	Bacteroides fragilis_A	0.395%	0.00 - 0.00%	High
•	Firmicutes_A	Flavonifractor plautii	0.352%	0.00 - 0.049%	High

Formerly known as Clostridium orbiscindens and Eubacterium plautii.

Fuel Sources Used:

This species is a poor degrader of fibre, a moderate degrader of mucin, and a moderate degrader of protein.

Metabolites produced:

Our genomic analysis indicates that most members of this species can produce the following metabolites: acetate, branched chain amino acids, butyrate, cobalamin (B12), lactate, propionate.

Metabolites consumed:

In addition, the genomic analysis shows that most members of this species can consume: GABA.

Emerging Research:

Higher levels of this species have been observed in patients with Crohn's disease, ulcerative colitis and in children with irritable bowel syndrome.

41/51 • v0.8.0-gf9ee31 • MGDB_v2 • DEMOZ3 • Sergio Null • 06 Jun 2022

SPECIES

	Phylum	Species	Abundance	Range	Level
θ	Firmicutes_A	Faecalicatena lactaris	0.344%	0.00 - 0.752%	Average
Ρ	reviously called Rumin	ococcus lactaris, this is a common inhabitant	of the human gut.		
	uel Sources Used: his species is a poor de	egrader of fibre, a moderate degrader of mucir	n, and a moderate degra	ader of protein.	
0	-	dicates that most members of this species ca (B12), folate (B9), lactate.	n produce the following	g metabolites: acetate,	branched chain
	letabolites consumed: addition, the genomic	analysis indicates that most members of this	species do not consun	ne any reported metabo	olites.
T b		bserved at lower levels in individuals with insu rer, despite the likely beneficial role of this spec d arthritis.		•	
	Bacteroidota	Bacteroides salyersiae	0.325%	0.00 - 0.215%	High
	Fusobacteriota	Fusobacterium_A MIC9460	0.309%	0.00 - 0.00%	High
	Firmicutes_A	Faecalicatena glycyrrhizinilyticum	0.308%	0.00 - 0.00%	High

42/51 • v0.8.0-gf9ee31 • MGDB_v2 • DEMOZ3 • Sergio Null • 06 Jun 2022

SPECIES

	Phylum	Species	Abundance	Range	Level
0	Firmicutes_A	Dorea formicigenerans	0.298%	0.069 - 0.301%	Average
F	ormerly known as Euba	acterium formicgenerans. This is a common ir	nhabitant of the humar	n gut.	
-	uel Sources Used: his species is a poor de	egrader of fibre, a poor degrader of mucin, and	l a moderate degrader	of protein.	
С	-	dicates that most members of this species ca (B12), folate (B9), lactate, riboflavin (B2).	n produce the followin	g metabolites: acetate,	branched chain
	letabolites consumed: addition, the genomic	analysis indicates that most members of this	s species do not consur	ne any reported metabo	olites.
Т		bserved at decreased levels in individuals with ating it likely plays a beneficial role in health.	n colon cancer, inflamn	natory bowel disease ar	nd chronic
0	Firmicutes_A	Clostridium_A leptum	0.292%	0.00 - 0.054%	High
Т	his is an inhabitant of	the gut microbiome.			
_	uel Sources Used: his species is a modera	ate degrader of fibre, a poor degrader of mucir	n, and a moderate degr	ader of protein.	
С	letabolites produced: our genomic analysis in mino acids, lactate.	dicates that most members of this species ca	n produce the followin	g metabolites: acetate,	branched chain
	letabolites consumed: addition, the genomic	analysis indicates that most members of this	s species do not consur	me any reported metabo	olites.

Emerging Research:

Lower levels of this species have been observed in individuals with Crohn's disease.

43/51 • v0.8.0-gf9ee31 • MGDB_v2 • DEMOZ3 • Sergio Null • 06 Jun 2022

SPECIES

	Phylum	Species	Abundance	Range	Level
0	Desulfobacterota_	Bilophila wadsworthia	0.259%	0.00 - 0.217%	High
	A				

This is a common inhabitant of the human gut, but can become problematic at high levels.

Fuel Sources Used:

This species is a poor degrader of fibre, a poor degrader of mucin, and a moderate degrader of protein.

Metabolites produced:

Our genomic analysis indicates that most members of this species can produce the following metabolites: acetate, ammonia (urease), branched chain amino acids, hydrogen sulphide, lactate, riboflavin (B2), trimethylamine.

Metabolites consumed:

In addition, the genomic analysis indicates that most members of this species do not consume any reported metabolites.

Emerging Research:

Higher levels of this species have been observed in patients with colon cancer and in people that have a diet high in saturated fats. Mice studies have also suggested this species can promote increased inflammation in the gut and increased barrier dysfunction, though more research needs to be conducted in humans to confirm these results.

Firmicutes_A	UBA9502 MIC8595	0.258%	0.00 - 0.00%	High
Firmicutes_A	Blautia_A sp000433815	0.245%	0.00 - 0.00%	High

44/51 • v0.8.0-gf9ee31 • MGDB_v2 • DEMOZ3 • Sergio Null • 06 Jun 2022

SPECIES

Phylum	Species	Abundance	Range	Level
Firmicutes_A	Clostridium_M bolteae	0.180%	0.00 - 0.00%	High
his is an inhabitai	nt of the human gut.			
uel Sources Used	l:			
his species is a m	oderate degrader of fibre, a poor degi	rader of mucin, and a moderate d	egrader of protein.	
letabolites produ	ced.			
	ced: sis indicates that most members of t	his species can produce the follow	wing metabolites: acet	ate, branched cha
ur genomic analy			wing metabolites: acet	ate, branched cha
ur genomic analy mino acids, cobal	sis indicates that most members of t amin (B12), folate (B9), lactate, ribofl		wing metabolites: acet	ate, branched cha
our genomic analy mino acids, cobal letabolites consu	sis indicates that most members of t amin (B12), folate (B9), lactate, ribofl	avin (B2), trimethylamine.		ate, branched cha
mino acids, cobal /letabolites consu n addition, the gen	sis indicates that most members of t amin (B12), folate (B9), lactate, ribofl med: omic analysis shows that most mem	avin (B2), trimethylamine.		ate, branched cha
Our genomic analy mino acids, cobal Aetabolites consu n addition, the gen	sis indicates that most members of t amin (B12), folate (B9), lactate, ribofl med: omic analysis shows that most mem h:	avin (B2), trimethylamine.	e: GABA.	
Our genomic analy mino acids, cobal Aetabolites consu in addition, the gen Emerging Researc This species has be	sis indicates that most members of t amin (B12), folate (B9), lactate, ribofl med: omic analysis shows that most mem h: een observed at higher levels in indivi	avin (B2), trimethylamine. obers of this species can consume iduals with type II diabetes, asthm	e: GABA. na, inflammatory bowe	
Our genomic analy mino acids, cobal Aetabolites consu in addition, the gen Emerging Researc This species has be	sis indicates that most members of t amin (B12), folate (B9), lactate, ribofl med: omic analysis shows that most mem h:	avin (B2), trimethylamine. obers of this species can consume iduals with type II diabetes, asthm	e: GABA. na, inflammatory bowe	

45/51 • v0.8.0-gf9ee31 • MGDB_v2 • DEMOZ3 • Sergio Null • 06 Jun 2022

SPECIES

Phylum	Species	Abundance	Range	Level
Actinobacteriot	a Eggerthella lenta	0.173%	0.00 - 0.080%	High
nis is an inhabitar	nt of the gut microbiota, but has al	so been associated with gastrointe	estinal infections.	
iel Sources Used	:			
nis species is a po	oor degrader of fibre, a poor degrac	der of mucin, and a moderate degra	ader of protein.	
etabolites produc	ced:			
		of this species can produce the follo	owing metabolites: acet	ate, branched ch
nino acids, GABA	, histamine, lactate, vitamin K.			
etabolites consu	ned:			
addition, the gen	omic analysis indicates that most	members of this species do not co	onsume any reported me	etabolites.
nerging Researc	n:			
nis species can al	so use some steroids such as the	stress hormone cortisol, and the ne	eurotransmitter dopamir	ne, for energy.
evated levels of E	. <i>lenta</i> have been associated with	frailty, atherosclerosis, chronic fati	aue syndrome. type II di	abetes. irritable
		nis species can also inactivate the o		
to vooit and the other one	pecies prefers the amino acid argin	nine for growth. When arginine is pr	resent, this inhibits E. ler	nta from breakin
••••				
wn digoxin. Firmicutes_A	Coprococcus_A catus	0.110%	0.00 - 0.269%	Average

This is an inhabitant of the human gut.

Fuel Sources Used:

This species is a poor degrader of fibre, a poor degrader of mucin, and a moderate degrader of protein.

Metabolites produced:

Our genomic analysis indicates that most members of this species can produce the following metabolites: acetate, branched chain amino acids, cobalamin (B12), folate (B9), lactate, propionate, riboflavin (B2).

Metabolites consumed:

In addition, the genomic analysis indicates that most members of this species do not consume any reported metabolites.

Emerging Research:

Lower levels of this species have been observed in individuals with irritable bowel syndrome and with depression, indicating it likely plays a beneficial role in health.

46/51 • v0.8.0-gf9ee31 • MGDB_v2 • DEMOZ3 • Sergio Null • 06 Jun 2022

SPECIES

	Phylum	Species	Abundance	Range	Level
	Firmicutes_A	Clostridium_M MIC6986	0.101%	0.00 - 0.071%	High
	Bacteroidota	Butyricimonas sp002161485	0.093%	0.00 - 0.086%	High
Ð	Bacteroidota	Bacteroides cellulosilyticus	0.085%	0.00 - 0.326%	Average

This is a common gut inhabitant.

Fuel Sources Used:

This species is a good degrader of fibre, a good degrader of mucin, and a moderate degrader of protein.

Metabolites produced:

Our genomic analysis indicates that most members of this species can produce the following metabolites: acetate, betaglucuronidase, biotin (B7), branched chain amino acids, folate (B9), GABA, lactate, riboflavin (B2).

Metabolites consumed:

In addition, the genomic analysis indicates that most members of this species do not consume any reported metabolites.

Emerging Research:

Higher levels of this species have been observed in patients with hypertension. However another study observed lower levels in individuals with irritable bowel syndrome.

Firmicutes_A	Flavonifractor sp000508885	0.075%	0.00 - 0.020%	High
Bacteroidota	Prevotella bivia	0.072%	0.00 - 0.031%	High
Firmicutes_A	Acutalibacteraceae MIC7795	0.067%	0.00 - 0.052%	High
Firmicutes	Absiella innocuum	0.067%	0.00 - 0.020%	High

47/51 • v0.8.0-gf9ee31 • MGDB_v2 • DEMOZ3 • Sergio Null • 06 Jun 2022

SPECIES

	Phylum	Species	Abundance	Range	Level
	Firmicutes_A	Lawsonibacter MIC7082	0.066%	0.00 - 0.00%	High
•	Firmicutes	Streptococcus salivarius	0.056%	0.00 - 0.185%	Average

This is a common inhabitant of the human oral microbiota and is also found in the human gut.

Fuel Sources Used:

This species is a moderate degrader of fibre, a poor degrader of mucin, and a moderate degrader of protein.

Metabolites produced:

Our genomic analysis indicates that most members of this species can produce the following metabolites: acetate, ammonia (urease), branched chain amino acids, folate (B9), lactate.

Metabolites consumed:

In addition, the genomic analysis indicates that most members of this species do not consume any reported metabolites.

Emerging Research:

This species has been observed at higher levels in patients with hypertension, Crohn's disease and atherosclerosis, however one study observed it at lower levels in patients with colon cancer.

48/51 • v0.8.0-gf9ee31 • MGDB_v2 • DEMOZ3 • Sergio Null • 06 Jun 2022

SPECIES

	Phylum	Species	Abundance	Range	Level		
•	Firmicutes_A	Clostridium_M clostridioforme	0.056%	0.00 - 0.00%	High		
This is an inhabitant of the human gut.							
 Fuel Sources Used: This species is a moderate degrader of fibre, a poor degrader of mucin, and a moderate degrader of protein. Metabolites produced: Our genomic analysis indicates that most members of this species can produce the following metabolites: acetate, beta-glucuronidase, branched chain amino acids, cobalamin (B12), folate (B9), lactate, riboflavin (B2), trimethylamine. Metabolites consumed: In addition, the genomic analysis indicates that most members of this species do not consume any reported metabolites. 							
lr E	n addition, the genomic merging Research:			ne any reported metabo	olites.		
lr E	n addition, the genomic merging Research:	c analysis indicates that most members of this		ne any reported metabo 0.00 - 0.00%	olites. High		
lr E	n addition, the genomic merging Research: ligher levels of this spe	c analysis indicates that most members of this ecies have been observed in individuals with C	rohn's disease.				
lr E	n addition, the genomic merging Research: ligher levels of this spe Firmicutes_A	e analysis indicates that most members of this ecies have been observed in individuals with C Eubacterium callanderi	rohn's disease. 0.055%	0.00 - 0.00%	High		
lr E	n addition, the genomic merging Research: ligher levels of this spe Firmicutes_A Firmicutes_A	ecies have been observed in individuals with C Eubacterium callanderi Lawsonibacter asaccharolyticus	rohn's disease. 0.055% 0.052%	0.00 - 0.00% 0.00 - 0.096%	High Average		
lr E	merging Research: ligher levels of this specific Firmicutes_A Firmicutes_A Firmicutes_A	ecies have been observed in individuals with C Eubacterium callanderi Lawsonibacter asaccharolyticus Agathobaculum sp900291975	rohn's disease. 0.055% 0.052% 0.049%	0.00 - 0.00% 0.00 - 0.096% 0.00 - 0.00%	High Average High		

49/51 • v0.8.0-gf9ee31 • MGDB_v2 • DEMOZ3 • Sergio Null • 06 Jun 2022

SPECIES

	Phylum	Species	Abundance	Range	Level
	Firmicutes_A	Eisenbergiella tayi	0.030%	0.00 - 0.002%	High
•	Firmicutes	Erysipelatoclostridium ramosum	0.029%	0.00 - 0.00%	High

Formerly known as *Clostridium ramosum*. This is an inhabitant of the human gut.

Fuel Sources Used:

This species is a moderate degrader of fibre, a poor degrader of mucin, and a moderate degrader of protein.

Metabolites produced:

Our genomic analysis indicates that most members of this species can produce the following metabolites: acetate, branched chain amino acids, folate (B9), hydrogen sulphide, lactate.

Metabolites consumed:

In addition, the genomic analysis indicates that most members of this species do not consume any reported metabolites.

Emerging Research:

Elevated levels of this species have been observed in individuals with with obesity, type II diabetes, Crohn's disease and asthma. This species has been associated with a high fat diet. A mouse study observed that glucose and fat transporters are more active when this species is present, suggesting a possible way this species is involved in metabolic disorders.

Firr	micutes_A	Clostridium neonatale	0.026%	0.00 - 0.00%	High
Firr	micutes_A	Clostridium_M MIC9612	0.023%	0.00 - 0.00%	High
Firr	micutes_A	Massilimaliae timonensis	0.016%	0.00 - 0.00%	High

50/51 • v0.8.0-gf9ee31 • MGDB_v2 • DEMOZ3 • Sergio Null • 06 Jun 2022

my**BIOME**

SYNLAB

Gut microbiome report

51/51 • v0.8.0-gf9ee31 • MGDB_v2 • DEMOZ3 • Sergio Null • 06 Jun 2022